Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Exp Neurol ; 363: 114375, 2023 05.
Article in English | MEDLINE | ID: covidwho-2271639

ABSTRACT

Microglia, the resident macrophage of the central nervous system, are increasingly recognized as contributing to diverse aspects of human development, health, and disease. In recent years, numerous studies in both mouse and human models have identified microglia as a "double edged sword" in the progression of neurotropic viral infections: protecting against viral replication and cell death in some contexts, while acting as viral reservoirs and promoting excess cellular stress and cytotoxicity in others. It is imperative to understand the diversity of human microglial responses in order to therapeutically modulate them; however, modeling human microglia has been historically challenging due to significant interspecies differences in innate immunity and rapid transformation upon in vitro culture. In this review, we discuss the contribution of microglia to the neuropathogenesis of key neurotropic viral infections: human immunodeficiency virus 1 (HIV-1), Zika virus (ZIKV), Japanese encephalitis virus (JEV), West Nile virus (WNV), Herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We pay special attention to recent work with human stem cell-derived microglia and propose strategies to leverage these powerful models to further uncover species- and disease-specific microglial responses and novel therapeutic interventions for neurotropic viral infections.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Animals , Mice , Microglia/metabolism , Host Microbial Interactions , Zika Virus Infection/metabolism , COVID-19/metabolism , SARS-CoV-2
2.
Front Mol Biosci ; 9: 1051471, 2022.
Article in English | MEDLINE | ID: covidwho-2229578

ABSTRACT

Introduction: Infection by SARS-CoV-2 and subsequent COVID-19 can cause viral sepsis. We investigated plasma protease activity patterns in COVID-19-induced sepsis with bacterial superinfection, as well as plasma proteomics and peptidomics in order to assess the possible implications of enhanced proteolysis on major protein systems (e.g., coagulation). Methods: Patients (=4) admitted to the intensive care units (ICUs) at the University of California, San Diego (UCSD) Medical Center with confirmed positive test for COVID-19 by real-time reverse transcription polymerase chain reaction (RT-PCR) were enrolled in a study approved by the UCSD Institutional Review Board (IRB# 190699, Protocol #20-0006). Informed consent was obtained for the collection of blood samples and de-identified use of the data. Blood samples were collected at multiple time points and analyzed to quantify a) the circulating proteome and peptidome by mass spectrometry; b) the aminopeptidase activity in plasma; and c) the endopeptidase activity in plasma using fluorogenic substrates that are cleaved by trypsin-like endopeptidases, specific clotting factors and plasmin. The one patient who died was diagnosed with bacterial superinfection on day 7 after beginning of the study. Results: Spikes in protease activity (factor VII, trypsin-like activity), and corresponding increases in the intensity of peptides derived by hydrolysis of plasma proteins, especially of fibrinogen degradation products and downregulation of endogenous protease inhibitors were detected on day 7 for the patient who died. The activity of the analyzed proteases was stable in survivors. Discussion: The combination of multiomics and enzymatic activity quantification enabled to i) hypothesize that elevated proteolysis occurs in COVID-19-induced septic shock with bacterial superinfection, and ii) provide additional insight into malfunctioning protease-mediated systems, such as hemostasis.

3.
Cell Rep Med ; 4(2): 100935, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2211655

ABSTRACT

Transcription factor programs mediating the immune response to coronavirus disease 2019 (COVID-19) are not fully understood. Capturing active transcription initiation from cis-regulatory elements such as enhancers and promoters by capped small RNA sequencing (csRNA-seq), in contrast to capturing steady-state transcripts by conventional RNA-seq, allows unbiased identification of the underlying transcription factor activity and regulatory pathways. Here, we profile transcription initiation in critically ill COVID-19 patients, identifying transcription factor motifs that correlate with clinical lung injury and disease severity. Unbiased clustering reveals distinct subsets of cis-regulatory elements that delineate the cell type, pathway-specific, and combinatorial transcription factor activity. We find evidence of critical roles of regulatory networks, showing that STAT/BCL6 and E2F/MYB regulatory programs from myeloid cell populations are activated in patients with poor disease outcomes and associated with COVID-19 susceptibility genetic variants. More broadly, we demonstrate how capturing acute, disease-mediated changes in transcription initiation can provide insight into the underlying molecular mechanisms and stratify patient disease severity.


Subject(s)
COVID-19 , Transcription Factors , Humans , Transcription Factors/genetics , Gene Expression Regulation , Leukocytes/metabolism , Intensive Care Units
4.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L84-L92, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1891936

ABSTRACT

Increased plasma mitochondrial DNA concentrations are associated with poor outcomes in multiple critical illnesses, including COVID-19. However, current methods of cell-free mitochondrial DNA quantification in plasma are time-consuming and lack reproducibility. Here, we used next-generation sequencing to characterize the size and genome location of circulating mitochondrial DNA in critically ill subjects with COVID-19 to develop a facile and optimal method of quantification by droplet digital PCR. Sequencing revealed a large percentage of small mitochondrial DNA fragments in plasma with wide variability in coverage by genome location. We identified probes for the mitochondrial DNA genes, cytochrome B and NADH dehydrogenase 1, in regions of relatively high coverage that target small sequences potentially missed by other methods. Serial assessments of absolute mitochondrial DNA concentrations were then determined in plasma from 20 critically ill subjects with COVID-19 without a DNA isolation step. Mitochondrial DNA concentrations on the day of enrollment were increased significantly in patients with moderate or severe acute respiratory distress syndrome (ARDS) compared with those with no or mild ARDS. Comparisons of mitochondrial DNA concentrations over time between patients with no/mild ARDS who survived, patients with moderate/severe ARDS who survived, and nonsurvivors showed the highest concentrations in patients with more severe disease. Absolute mitochondrial DNA quantification by droplet digital PCR is time-efficient and reproducible; thus, we provide a valuable tool and rationale for future studies evaluating mitochondrial DNA as a real-time biomarker to guide clinical decision-making in critically ill subjects with COVID-19.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/diagnosis , COVID-19/genetics , Critical Illness , DNA, Mitochondrial/genetics , Humans , Intensive Care Units , Polymerase Chain Reaction , Reproducibility of Results , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/genetics
5.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684541

ABSTRACT

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Subject(s)
COVID-19 , Extracellular Traps , Critical Illness , Humans , Neutrophil Activation , Neutrophils , Phenotype , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL